<table>
<thead>
<tr>
<th>S.No</th>
<th>Subject</th>
<th>Name of Student</th>
<th>Seminar Topic</th>
<th>Date of Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Aircraft structure-II</td>
<td></td>
<td>Unsymmetrical Bending</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Principle axis method</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Neutral axis method</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Bending stress of Z section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Bending stress of L section.</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Aircraft structure-II</td>
<td></td>
<td>Bending stress calculation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Bending stress calculation using principle axis method.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Bending stress calculation using neutral axis method.</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Aircraft structure-II</td>
<td></td>
<td>Application of unsymmetrical bending</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Bending stress for mono spar and multispeed beam.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Bending stress distribution on stringer and ribs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Design of lightening holes in wing structure.</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Aircraft structure-II</td>
<td></td>
<td>Shear flow in closed section</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Concept of shear flow, ELastic axis shear centre.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Thin walled beam’s analysis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Calculation method of shear centre and shear flow.</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>Aircraft structure-II</td>
<td></td>
<td>Shear flow in thin walled bean</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Shear flow of thin walled beam’s in fuselage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Shear flow of thin walled beam’s in wing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Shear flow of thin walled bean on tail plane unit.</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>06</td>
<td>Aircraft structure-II</td>
<td></td>
<td>Shear flow in unsymmetrical beam section</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Shear on flow in channel C section</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Shear flow in angle L section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Application in aircraft structure components.</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>Aircraft structure-II</td>
<td></td>
<td>Shear flow in closed section</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Application of bredt-batho formula.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Bred batho for close Loops.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Calculation of shear flow in and on rectangular rings.</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Aircraft structure-II</td>
<td></td>
<td>Single and multi-cell structures</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Concept of single cell and multicell structure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Application of multicell structure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Shear flow in single and multicell structure.</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Aircraft structure-II</td>
<td></td>
<td>Shear flow in single and multicell under bending</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Shear flow due to bending.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Graphical representation of shear flow in multicell.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Concept of effective and in effective cell bending of walls.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Aircraft structure-II</td>
<td></td>
<td>Buckling of plates.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Various condition of bucking and crippling stress.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Bucking of rectangular sheets under compression.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Application of short and long column.</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 11 | Aircraft structure-II | | Needham’s and Gerard’s method.
* Application of needham’s method
* Various end condition of needham’s method.
* Application of Gerard’s method.
* Calculation method for thin walled section. | |
| 12 | Aircraft structure-II | | Thin walled column strength.
* Calculation of stiffness strength on stiffnes plates.
* Calculation of effective width.
* Thermal post bucking of aircraft wing. | |
| 13 | Aircraft structure-II | | Stress Analysis in wing and fuselage
* Stress distribution or wing surface (Different place)
* Stress distribution over fuselage system
* Concept of dension field bean (Wagner’s type.) | |
| 14 | Aircraft structure-II | | Shear and bending moment distribution.
* Relation between shear force & bending moment.
* Shear force and bending moment diagram’s for cantilever and semi cantilever beam.
* Application of condition and semi cantilever beam. | |
| 15 | Aircraft structure-II | | Loads on Aircraft.
* Type of load acting on aircraft during flight condition.
* Lift distribution pattern on different planform.
* V-N diagram application.
* Effect of gust load. | |
<table>
<thead>
<tr>
<th>S.No</th>
<th>Subject</th>
<th>Name of Student</th>
<th>Seminar Topic</th>
<th>Date of Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Aircraft Design</td>
<td></td>
<td>Proposing and fuel system integration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Propulsion selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Jet engine integration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Proper engine integration</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Aircraft Design</td>
<td></td>
<td>Landing gear geometry and arrangements</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Landing gear arrangements</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Tire sizing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Shocking absorbers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Casting-wheel geometry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Gear retraction geometry</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Aircraft Design</td>
<td></td>
<td>Aircraft subsystem</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Hydraulics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Electrical system</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Pneumatic system</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Auxiliary/Emergency Power</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Avionics</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Aircraft Design</td>
<td></td>
<td>Aerodynamic coefficients :</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Introduction to lift and drag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Lift coefficient</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Drag coefficient</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Drag polar curves</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Subsonic Lift-curve slope</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Supersonic Lift-curve slope</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 05 | Aircraft | | * Transonic Lift-curve slope
 * Non-liner lift effects
 * Maximum lift | |
| | Design | | Loads on flight
 * Introduction
 * Loads categories
 * Air loads
 * Inertial loads
 * Power-Plant loads
 * Landing gear loads | |
| 06 | Aircraft | | Types of drags acting on an aircraft
 * Introduction
 * Transonic drag rise
 * Skin friction drag
 * Wave drag
 * Interference drag
 * Parasite drag
 * Induced drag | |
| | Design | | Airfoil selection in Aircraft design
 * Introduction
 * Airfoil selection procedures
 * Airfoil geometry
 * Leading edge radius
 * Selection of chord length and camber
 * Airfoil families | |
<table>
<thead>
<tr>
<th>S.No</th>
<th>Subject</th>
<th>Name of Student</th>
<th>Seminar Topic</th>
<th>Date of Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>08</td>
<td>Aircraft Design</td>
<td></td>
<td>- Early airfoils
- NACA airfoils (4 digit, 5 digit, 6 digit)
- Modern airfoils (Leaseman, Lieback, Super critical)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aircraft design process
 * Introduction to aircraft design
 * Phases of aircraft design
 - Conceptual design phase
 - Preliminary design phase
 - Detailed design phase
 * Mission profiles/requirements for design initiation
 * Wing design process
 * Engine sizing</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Aircraft Design</td>
<td></td>
<td>High lift devices
 * Introduction
 * Lift augmentation devices
 * Flaps and its types
 * Slots and its types</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 11 | Aircraft Design | | * Slats and its types
* Role and mechanism of working of high lift devices
* Role of high lift devices during landing and take-off
Boundary layer formation and control
* Introduction to boundary layer
* Boundary layer formation
* Boundary layer thickness
* Velocity profiles within boundary layer
* Boundary layer separation
* Flow reversal
Boundary layer control
- Boundary layer suction
- Boundary layer blowing
Wing planforms in aircraft design
* Introduction
* Types of wing planforms
* Rectangular wings
* Elliptical wing theory
* Tapered wings for elliptical lift distribution
* Dihedral wings
* Endaural wings
* Swept back wings
* Swept forward wings
* Delta wings (For high speed performances) | |
<table>
<thead>
<tr>
<th>S.No</th>
<th>Subject</th>
<th>Name of Student</th>
<th>Seminar Topic</th>
<th>Date of Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Aircraft Design</td>
<td></td>
<td>VTOL aircraft design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* VTOL terminology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Fundamental problems of VTOL design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* VTOL jet propulsion options</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Vectoring nozzle types</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* VTOL propulsion considerations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Weight effects of VTOL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Sizing effects of VTOL</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Aircraft Design</td>
<td></td>
<td>Aircraft flight controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Aircraft Lateral, longitudinal and vertical axis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Aircraft moments</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Pitching moment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Yawing moment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Rolling moment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Flight controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Pitching moment control using elevators</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Yawing moment control using rudder</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Rolling moment control using ailerons</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Aircraft Design</td>
<td></td>
<td>Aircraft engine controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Basic controls and indicators</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Master switch</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Throttle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Propeller control</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Mixture control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Ignition switch</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Tachometer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Manifold pressure gauge</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Oil temperature gauge</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Oil pressure gauge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuel</td>
<td></td>
<td>- Fuel primer pump</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Fuel quantity gauge</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Fuel select valve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Fuel pressure gauge</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Fuel boost pump switch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cowl</td>
<td></td>
<td>- Cowl flap position control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Cylinder head temperature gauge</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>01</td>
<td>Computational Fluid Dynamics</td>
<td></td>
<td>History and scope of CFD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Historical perspective with arising of need and invention</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Current trends and areas of implementation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Future prospects</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Computational Fluid Dynamics</td>
<td></td>
<td>Brief overview of the governing equations of fluid flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* CFD is fluid dynamics with an adjective computational</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Physical principles of fluid flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Write the complete Navier Stokes equations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Write the equations for unsteady two dimensional inviscid flow.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Some comments on the governing equations</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Computational Fluid Dynamics</td>
<td></td>
<td>Discretization</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Meaning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Requirement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Types</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Differences between FDM, FVM and FEM, giving advantage and limitations.</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Computational Fluid Dynamics</td>
<td></td>
<td>Unstructured grids- scope and future</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Definition, explain difference from structure grids</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Areas of application</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Types of discretization suitables for these</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Advantage and applications areas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Future</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>05</td>
<td>Computational Fluid Dynamics</td>
<td></td>
<td>Numerical methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Needs for numerical methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Areas of applications of such methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Relevance to computational fluid dynamics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Importance of algorithms</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Computational Fluid Dynamics</td>
<td></td>
<td>Experimental approach VS theoretical approach to fluid dynamics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Historical perspective giving meaning of the above terms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Advantage and limitations of both approaches</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>Computational Fluid Dynamics</td>
<td></td>
<td>Physical experiment VS numerical experiments</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Meaning of the terms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Pros and cons</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Computational Fluid Dynamics</td>
<td></td>
<td>Boundary conditions and Initial conditions in CFD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Meaning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Examples</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Computational Fluid Dynamics</td>
<td></td>
<td>Basis of finite volume methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Advantages</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Some theory</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>10</td>
<td>Computational Fluid Dynamics</td>
<td></td>
<td>Basis of finite elements method</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Some theory explaining the meaning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Advantages</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Computational Fluid Dynamics</td>
<td></td>
<td>Translation errors and consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Definition with examples</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Computational Fluid Dynamics</td>
<td></td>
<td>Macroarmark scheme</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Explanation with examples</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Computational Fluid Dynamics</td>
<td></td>
<td>Vector and parallel computing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Definitions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Comparison</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Areas of applications</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Computational Fluid Dynamics</td>
<td></td>
<td>Grid generation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Meaning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Methods like algebraic and PDF based</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Need and applications</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Computational Fluid Dynamics</td>
<td></td>
<td>FDM applied to linear advnecion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Conservation law</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Meaning of conversion and diffusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Derivation of convection diffusion equation</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>01</td>
<td>Aerodynamics-I</td>
<td></td>
<td>The standard Atmosphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* International Standard Atmosphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Structure of Atmosphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Composition related layers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Temperature related layers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Troposphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Stratosphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Mesosphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Thermosphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Exosphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Ozone layer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Radiation related layers</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Aerodynamics-I</td>
<td></td>
<td>Altitude</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Temperature Altitude</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Pressure Altitude</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Density Altitude</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Geo-potential Altitude</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Geometric Altitude</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Homogenous Atmosphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Heterogenous Atmosphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Lower Atmosphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Middle Atmosphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Upper Atmosphere</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Physical Atmosphere</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>03</td>
<td>Aerodynamics-I</td>
<td></td>
<td>Viscous Flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Laminar Flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Transition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Turbulence Flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Reynolds number</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Shear stress in Laminar Flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Laminar flow over flat plate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Newton’s law of viscosity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Flow separation due to viscosity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Turbulent flow over flat plate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Shear stress in Laminar flow</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Aerodynamics-I</td>
<td></td>
<td>Boundary Layer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Laminar Boundary layer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Boundary layer thickness</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Displacement Thickness</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Momentum Thickness</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Energy Thickness</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Momentum Integral equation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Prandtl mixing length concept</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Turbulent boundary layer thickness</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Skin friction coefficient</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Drag force calculation in Laminar boundary layer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Drag force calculation in turbulent boundary layer</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>05</td>
<td>Aerodynamics-I</td>
<td></td>
<td>Generation of lift Basic concept</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Uniform flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Stream function & Potential function</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Source & Sink flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Stream function and potential function of source flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Stream function and potential function of sink flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Combination of source and sink flow (Doublet flow)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Stream function and potential function of doublet flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Vortex flow and stream function vortex flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Combination of uniform and doublet flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Stream function and potential function of combine (uniform + doublet) flow</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Aerodynamics-I</td>
<td></td>
<td>Flow over non lifting & lifting cylinder</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* (Uniform + Doublet) flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Stream function and potential function</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Radial velocity at radius R.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Angular velocity at radius R.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Pressure distribution over non-lifting cylinder</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* (Uniform + Doublet + Vortex) flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Stream function & Potential function</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Radial velocity at radius R.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Angular velocity over lifting cylinder.</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>07</td>
<td>Aerodynamics-I</td>
<td></td>
<td>Generation of lift (Joukroski Theorem)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Joukroski Circulation theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* The Kutta condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Joukowski Transformation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Transform circle into straight line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Transform circle into symmetrical airfoil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Transform circle into cambered airfoil</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Aerodynamics-I</td>
<td></td>
<td>Thin Airfoil Theory -Flat Plate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* About thin Airfoil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Thin Airfoil equation for Flat Plat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Lift coefficient</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Lift slope</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Moment coefficient about near by edge</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Moment coefficients about generator chord point</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Aerodynamic center</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Aerodynamics-I</td>
<td></td>
<td>Thin Airflow Theory for Cambered airfoil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* General thin airfoil equation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Cambered thin airfoil equation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Lift coefficient</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Induced angle of attack</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Lift slope</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Moment coefficients about generator chord point</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Aerodynamic centre</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>10</td>
<td>Aerodynamics-I</td>
<td></td>
<td>Infinite & Finite wing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Infinite wing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Lift calculation for Infinite wing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Drag calculation for Infinite wing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Moment calculation for Infinite wing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Finite wing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Lift calculation for finite wing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Drag calculation for finite wing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Induced angle of attack</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Aerodynamics-I</td>
<td></td>
<td>Lifting line theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Down wash</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Effective angle of attack</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Vortex line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Vortex filament</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Bond vortex</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Horse shoe vortex</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Lifting line</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Bio-savart law</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Elliptical lift Distribution</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Aerodynamics-I</td>
<td></td>
<td>Low Speed wind Tunnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Open circuit wind tunnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Close circuit wind tunnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Blow down type wind tunnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Suction type wind tunnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Efusserr design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Test suction design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Throat tunnel design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Diffuser design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Driving unit</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>13</td>
<td>Aerodynamics-I</td>
<td></td>
<td>High speed wind tunnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Blow down type wind tunnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Induction type wind tunnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Advantage & Disadvantage of blow down wind tunnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Advantage & Disadvantage of Induction type wind tunnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Intermittent type supersonic wind tunnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Continues type supersonic wind tunnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Effect of second throat in supersonic wind tunnel</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Aerodynamics-I</td>
<td></td>
<td>Flow visualization Techniques</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Smoke generator method</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Chemical coating method</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Interferometer method</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Schlieren and shadow graph method</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Hot-wire Anemometer to measure velocity</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Aerodynamics-I</td>
<td></td>
<td>Wind Tunnel Balance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Basic feature of wire-type of balance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* How to measure the Aerodynamic forces by wire-type balance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Basic feature of strut-type balance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* How to measure the Aerodynamic forces by strut-type balance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Basic feature of platform type balance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* How to measure the Aerodynamic forces by platform type balance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Basic feature of strain gauge type balance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* How to measure the Aerodynamic forces by this method</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>01</td>
<td>Digital Techniques</td>
<td></td>
<td>The octal number system</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Importance of octal system</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Octal to binary conversion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Binary to octal conversion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Octal to decimal conversion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Decimal to octal conversion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Octal arithmetic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Application</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Digital Techniques</td>
<td></td>
<td>Binary codes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Verification of binary codes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* BCD system</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* BCD addition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* BCD subtraction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* XS-3code</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Gray code</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* User detecting codes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Error correcting codes</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Digital Techniques</td>
<td></td>
<td>Boolean algebra</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Logic operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- AND</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- NOT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- NAND</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- NOR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- XOR & X-NOR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Laws of boolean algebra</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Applications</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 04 | Digital Techniques | Karnaugh map | * Introduction
 * Basic diagram
 * 2 variable & 3 variable K-Map
 * SOP expression
 * POS expression
 * Applications | |
| 05 | Digital Techniques | Quite- Mccluskey method | * Introduction to the method
 * Decimal representation
 * Don’t care
 * Prime implicant chart
 * The branching method
 * Applications | |
| 06 | Digital Techniques | Adders | * Introduction to adders
 * Design procedure
 * The half adder
 * The full adder
 * Applications | |
| 07 | Digital Technique | Subtracters | * Introduction to subtracters
 * Design procedure
 * The half subtracter
 * The full subtracter
 * Applications | |
<table>
<thead>
<tr>
<th>S.No</th>
<th>Subject</th>
<th>Name of Student</th>
<th>Seminar Topic</th>
<th>Date of Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>08</td>
<td>Digital Technique</td>
<td></td>
<td>Code convertors</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Design of 4 bit binary to gray code convertor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Design of a 4 bit binary to BCD Code converter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Design of 4 bit BCD to XS-3 code converter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Applications</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Digital Technique</td>
<td></td>
<td>Parity Bit Generation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Parallel parity bit generator for hanning codes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Design of or Even parity bit generator for a 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Basic 2 i/p MUX</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* 4 i/p MUX</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Applications of MUX</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Digital Technique</td>
<td></td>
<td>Comparators</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* 1-Bit magnitude comparator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* 2-Bit magnitude comparator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* 4-Bit magnitude comparator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* IC Comparator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Application</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Digital Technique</td>
<td></td>
<td>Encoders</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Block diagrams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Equations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Octal to Binary encoders</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Decimal to BCD Encoders</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Application</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 12 | Digital Technique | | Decoders
* Introductions
* 3 to 8 Decoder
* Enable input
* BCD To decimal decoder
* 4 to 16 decoder
* Decoder application | |
| 13 | Digital Technique | | Multiplexers
* Introduction
* Data selectors
* Diagrams
* Basic 2 i/p MUX
* 4 i/p MUX
* Applications | |
| 14 | Digital Technique | | Hip Hop
* Introduction
* Classification of iequential circuit
* Hip-Hop operation characteristics
* Conversion of hip hops
* Application | |
| 15 | Digital Technique | | Shift Registers
* Introduction
* Buffer Register
* Controlled Buffer register | |
<table>
<thead>
<tr>
<th>S.No</th>
<th>Subject</th>
<th>Name of Student</th>
<th>Seminar Topic</th>
<th>Date of Seminar</th>
</tr>
</thead>
</table>
| 16 | Digital Technique | | * SISO
* PISO
* SIPO
* PIPO
* Applications of shift registers
Counters
* Introduction
* Asynchronous counters
* Design of Asynchronous counters
* Synchronous counter
* Design of synchronous counters
* Applications | |
<table>
<thead>
<tr>
<th>S.No</th>
<th>Subject</th>
<th>Name of Student</th>
<th>Seminar Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Mechanics of composite materials</td>
<td></td>
<td>Classification of composites</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Introduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Classification criteria’s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Difference</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Advantage/Disadvantage</td>
</tr>
<tr>
<td>02</td>
<td>Mechanics of composite materials</td>
<td></td>
<td>Different types of fibers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Explain different types of fibers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Their properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Surface treatment of these fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Advantage /uses</td>
</tr>
<tr>
<td>03</td>
<td>Mechanics of composite materials</td>
<td></td>
<td>Matric material</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Introduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Different types</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Composition/ manufacturing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Properties</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Advantage/disadvantage</td>
</tr>
<tr>
<td>04</td>
<td>Mechanics of composite materials</td>
<td></td>
<td>Manufacturing process 1st part</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Introduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Basic requirements of manufacturing methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Explain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Open mould method</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Continuous method</td>
</tr>
</tbody>
</table>

(continued...)

B.Tech. Semester -6
<table>
<thead>
<tr>
<th>S.No</th>
<th>Subject</th>
<th>Name of Student</th>
<th>Seminar Topic</th>
<th>Date of Seminar</th>
</tr>
</thead>
</table>
| 05 | Mechanics of composite materials | | Manufacturing process part-II
* Introduction
* Explain various types of “closed mold methods in detail” | |
| 06 | Mechanics of composite materials | | Unidirectional composites
* Introduction
* Properties
* Advantage/Disadvantage | |
| 07 | Mechanics of composite materials | | Properties of composites part-1
* Explain the following for unidirectional composites
* Volume Traction
* Desity
* Longitudinal strength & stifness
* Factor affecting these properties | |
| 08 | Mechanics of composite materials | | Properties of composites part-2
* Explain the following for unidirectional composites
* Transverse strength & stifness
* Shear modulus & strength
* Poisson’s ratio | |
| 09 | Mechanics of composite materials | | Orthotropic lamina/composite
* Introduction
* Engineering constant & its relation with stiffness coefficients.
* Strenght of orthotropic
* Failure theories. | |
<table>
<thead>
<tr>
<th>S.No</th>
<th>Subject</th>
<th>Name of Student</th>
<th>Seminar Topic</th>
<th>Date of Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Mechanics of composite materials</td>
<td></td>
<td>Laminated composites</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Analysis, Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Lamination & delamination</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Its requirement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Advantages</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Properties like stress & strain</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Mechanics of composite materials</td>
<td></td>
<td>Properties of laminates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Explain the following regarding laminates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Thermal & Moisture expansion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Mass diffusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Transport properties</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Isotropic analysis</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mechanics of composite materials</td>
<td></td>
<td>Short fibre composites</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Explain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Advantage fibre</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Stress</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Strength</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Short fibre</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Stress, strength</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Interlaminar shear</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Fracture Toughness</td>
<td></td>
</tr>
<tr>
<td>S.No</td>
<td>Subject</td>
<td>Name of Student</td>
<td>Seminar Topic</td>
<td>Date of Seminar</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 13 | Mechanics of composite materials | | Maintenance of composites
 * Classification of damage
 * Inspection
 * Repair operation
 * Repair procedure | | |
| 14 | Mechanics of composite materials | | Various structure & precautions
 * Type of structure
 - Laminate
 - Honey comb
 - Sandwich
 * Light protection
 * Painting of composites | | |
| 15 | Mechanics of composite materials | | Quality control, application & advantage of composite over metal& alloys | | |